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This paper characterizes interim efficient mechanisms for public good production and cost 
allocation in a two-type environment with risk-neutral, quasi-linear preferences and fixed-size 
projects, where the distribution of the private good, as well as the public goods decision, affects 
social welfare. An efficient public good decision can always be accomplished by a majority voting 
scheme, where the number of "YES" votes required depends on the welfare weights in a simple 
way. The results are shown to have a natural geometry and an intuitive interpretation. We also 
extend these results to allow for restrictions on feasible transfer rules, ranging from the traditional 
unlimited transfers to the extreme case of no transfers. 

For a range of welfare weights, an optimal scheme is a two-stage procedure which combines 
a voting stage with a second stage where an even-chance lottery is used to determine who pays. 
We call this the "lottery draft mechanism". Since such a cost-sharing scheme does not require 
transfers, it follows that in many cases transfers are not necessary to achieve the optimal allocation. 
For other ranges of welfare weights the second stage is more complicated, but the voting stage 
remains the same. If transfers are completely infeasible, randomized voting rules may be optimal. 
The paper also provides a geometric characterization of the effects of voluntary participation 
constraints. 

1. INTRODUCTION 

Deciding whether or not to undertake and how to distribute the cost of a public project 
of fixed size is a classic problem in economics. This problem and variations on it have 
been at the centre of attention of much of the work on optimal mechanism design under 
conditions of asymmetric information. Most of the work in the past has concentrated on 
the first question,' in the sense that optimality did not depend on the allocation of the 
private good. Utility was perfectly transferable through the private good, so cost distribu- 
tion played a role only insofar as transfers provided a convenient way of relaxing incentive 
constraints. 

The results for that case have been, for the most part, rather satisfying. If utility is 
transferable via a private good, then dominant-strategy mechanisms exist which fit the 
bill2 and which do not depend on prior information the players and the planner may have 
about the distribution of preferences for the public good. If the planner does have priors 

1. Exceptions include the work of Groves and Ledyard (1977b), Hurwicz (1979), and others, but their use 
of Nash equilibrium is controversial when applied in environments with incomplete and asymmetric information. 
Recently Jackson and Moulin (1992) have addressed distributional concerns, in a complete information 
framework. 

2. See Groves (1973), Green and Laffont (1979), and Groves and Ledyard (1977a) for descriptions of 
many of these results, and for extensive commentary on the restrictive nature of the assumptions needed for the 
main results. One serious limitation is the lack of budget balance. 
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328 REVIEW OF ECONOMIC STUDIES 

which are common knowledge among the players then there exist first-best mechanisms 
if the players' preferences are statistically and functionally related in a particular way 
(d'Aspremont and Gerard-Varet (1979, 1982), d'Aspremont, Cremer, and Gerard-Varet 
(1990)). 

All these results share two basic assumptions. First, the welfare properties of the final 
allocation depend only on the level of public good, and not on the distribution of cost 
shares. Second, there are no feasibility limitations on the transfer schemes. In particular, 
bankruptcy and other problems that could restrict the set of feasible side-payments, are 
ignored. 

In this paper, we relax both of these assumptions in the context of a Bayesian mecha- 
nism design problem with two preference-types, a 0-I public good decision, and statistical 
independence. First, we characterize the set of all interim incentive efficient allocation 
rules. We show that the earlier limitation to a welfare function that depends only on the 
public good allocation is equivalent to solving the second-best allocation problem for 
exactly one set of (interim) welfare weights.3 For any other choice of welfare weights, 
distributional considerations play a role, and the planner faces a tradeoff between using 
transfers to relax incentive constraints and using transfers to achieve distributional goals. 
We fully characterize the set of optimal allocation schemes for all welfare weights (Theorem 
5). Second, we show that the public good allocation rule depends on the welfare weights 
in a very simple way: The more the planner wants to shift the payment burden towards 
individuals who value the public good more, the less often the public good is produced 
(see the last two paragraphs of Section 3.1). 

Third, we investigate the implications of a wide class of restrictions on transfers, 
ranging from the traditional case of no limitations to the extreme case where transfers are 
impossible. We find systematic effects of these restrictions, and s:Sow that the qualitative 
features of these effects depend on the welfare weights. For example, in the traditional 
case, where welfare weights are chosen so that there are no distributional concerns, the 
first-best solution can be achieved without resorting to transfers at all (see the commentary 
following Corollary 9). More generally, however, transfers are needed to attain the second- 
best solution. If transfer constraints are binding, the solution is either first best or least 
cost in the sense that individuals who value the public good most are taxed to the limit 
(Theorem 11). 

Fourth, we show that the decision whether to produce the public good can be separ- 
ated from the transfer rule, and, in the model we consider, can be accomplished by a j*- 
majority voting scheme, where j*, the number of "YES" votes required, depends on 
the welfare weights. The results are shown to have a natural geometric interpretation. 
Furthermore, for a wide range of welfare weights, an optimal scheme is a two-stage 
procedure, where first a vote is taken on whether to produce the public good. If the vote 
is to produce the public good, then an even-chance lottery is used to determine who pays. 
We call this the "lottery draft mechanism". Since such a cost-sharing scheme does not 
require transfers, it follows that in many cases transfers are not necessary to achieve the 
optimal allocation (Corollary 9). 

Finally, we investigate the implications of imposing voluntary participation con- 
straints. From the geometric characterization obtained earlier in the paper, it is easy to 
establish several properties of the participation-constrained solution. In particular, it pro- 
vides a transparent proof of the results obtained by Mailath and Postlewaite (1990) and 

3. In asymmetric information models, these interim welfare weights depend on an individual's private 
information, or type. In our model, types are just preferences (marginal rates of substitution between the public 
and private good). 
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Rob (1989), that in large economies participation constraints imply that the public good 
will never be produced, unless it is common knowledge that a lottery draft mechanism 
does not violate participation constraints (Section 4). 

2. THE PROBLEM 

2.1. Feasible allocations, preferences, and information 

A group of N people must decide whether or not to produce a discrete public good and 
who should pay for it. 

A feasible allocation for this problem is any vector (xX,... , XN, Y) eXA x {o, 1} such 
that EN I Xi> Ky, where xi is the transfer (tax) paid by agent i, y is the amount of public 
good produced, K< N is a fixed constant, and X' is the set of feasible transfers an individual 
may pay. Here, y = 1 if the public good is produced, y = 0 otherwise and xi is the amount 
of private good that i contributes to the production of the public good. The set X' of 
feasible transfers for i depends on wi, the initial endowment, and on the possibilities for 
transfers of the private good. For this paper we assume wi= 1 for all i. We consider two 
types of transfer assumptions. First, we consider what happens if unlimited transfers are 
permissible and X'= 91, the real line. Second, we consider limited transfer schemes where 
Xic 9. Two special cases are: (1) no transfers at all,4 where X'= {O, 11, and (2) consump- 
tion lower bounds where X' = (- oo, 1], which restricts taxation to no more than the private 
good endowment. In all cases we will assume that {0, 1 } cX. 

Preferences of each individual depend upon whether or not the public good is pro- 
duced and how much of the private good is available to be consumed by that individual. 
Individuals evaluate lotteries over outcomes using expected utility satisfying von Neuman 
Morgenstern axioms. In particular we assume if the probability that the project is built is 
qe[O, 1], i's endowment of the private good is wi and i's expected contribution is aie[O, 1] 
then i's preferences can be represented by: 

Vi= q- v1a1. 

Three facts should be noticed about this representation. First, as is standard, we assume 
that an individual's preferences are quasi-linear in the private good. Second, as is also 
standard, we assume individuals are risk neutral. The first implies that each utility function 
is of the form g'[h'(y) + w'- x']. The second implies that expected utility must be of the 
form A'+ r'q + v'(w'- a') where A', ri and vi are constants. The third fact is that we have 
normalized all utility functions so that r1= 1 and to eliminate (A'+ v'w'). An alternative 
normalization, used by Clarke (1971) Groves (1973) and others, is v(q) = ciq - a'. Since 
any linear transformation preserves preferences satisfying the axioms of expected utility, 
these represent the same preferences. 

To simplify the problem, we restrict our attention in this paper to the two-type case5 
where V= {v1, v2} andO < vI < v2 . We will call v1 the low type and v2 the high type. To 
make the problem interesting, we assume that 1 ? (K/N)v1. Finally, we assume w'= 1 for 
all i. 

We assume that the individual marginal rates of substitution, v', are private informa- 
tion, and that these are independently drawn from an identical distribution where 7r E (0, 1) 
is the probability of a low type. 

4. This corresponds to an environment that has been studied extensively in laboratory experiments. See 
Palfrey and Rosenthal (1991a, b) and the references cited therein. 

5. For some results with continuous-types, see Ledyard and Palfrey (1989). 
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2.2. Mechanisms 

How might we choose an allocation (x1,.. . , x", y)? Many natural possibilities exist, even 
if transfers are not possible. Perhaps the most familiar such mechanism is the voluntary 
contribution mechanism. Each individual voluntarily pays xi and y is produced if and only 
if EN X Xi_K. Each i pays xi. Another simple mechanism is a (conditionao lottery draft 
where y is produced with some probability, q, which does not depend on the information 
of the individuals. Then if y = 1, K individuals are randomly selected and their xi = wi= 1 
while xi= 0 for the others. Both the voluntary contribution mechanism and the lottery 
draft are examples of mechanisms which do not use transfers of the private good between 
individuals. A somewhat different no transfer mechanism is the least-cost mechanism. Each 
i is asked to report her marginal rate of substitution, vi, of the public for the private good. 
If the public good is produced, these rates are ranked and the K lowest are required to 
pay xi= w'= 1; the others pay nothing. If individuals correctly report their v', this might 
produce superior allocations to, say, the lottery draft. Unfortunately there is an incentive 
to mis-report. 

Economic theory suggests that using transfers can reduce the incentive to mis-report 
in the last mechanism by compensating one type through taxes on the other type. Of 
course, if transfers are possible then we can improve things even more by transferring 
(arbitrarily) large amounts of the private good from the low v' types to high v' types-if 
vi represents the social marginal cost of xi-in which case a first-best solution does not 
exist. Only if the welfare function is such that the marginal social cost of a transfer is the 
same for both types does a first-best solution exist, since, in this special case, no social 
gains or losses result from transfers. This is precisely what has been analyzed extensively 
by economists with a key contribution being made by d'Aspremont and Gerard-Varet 
(1979). In this special case, the first-best solution is any (x, y) satisfying y = 1 if and only 
if ,N=1 (1/vi)> ?K. A mechanism provided by d'Aspremont and Gerard-Varet produces 
the first-best choice of y and provides incentives through the cost allocation xi, . . ., x", 
for each i to correctly identify her v'. To our knowledge no one has studied how to do 
this generally under conditions of asymmetric information when the social costs of transfers 
differ across types. We turn to that now. 

To find the optimal mechanism for the public good problem one might begin by 
trying to identify the space of all possible mechanisms. Luckily that is not necessary. Using 
the Revelation Principle,6 it can be shown that any allocation rule which can be attained 
as the Bayes equilibrium of some mechanism can also be attained as the Bayes equilibrium 
of a direct revelation mechanism: direct mechanisms which satisfy incentive compatibility 
constraints.7 Direct mechanisms (each of which uniquely defines an allocation rule) assign 
a probability measure over feasible allocations to every possible profile of types. 

Now since {V1, v2} is the set of possible types, a feasible direct mechanism is 

p: {VI, V2}N N-M(Z) 

whereZ={(x,y)eXNX {0, IIIE,N xi>Ky}, and M(Z) is the set of all probability 
measures on Z. Because lotteries between asymmetric mechanisms are possible and we are 
interested in symmetric welfare functions, we restrict attention to symmetric mechanisms 
whereby individuals are treated differently only if they have different vi's. This is justified 
by Lemmas 1 and 2 in the Appendix. 

6. See Gibbard (1973) or Harris and Townsend (1981). 
7. We do, nevertheless, return to other mechanisms below. 
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We can represent any direct symmetric mechanism by a collection of N+ 1 triples 
{ {aj, aj, qj} }jj o, where al = (expected) payment by a low type if there are exactly j low 
types and (N-j) high types; a]2= (expected) payment by a high type if there are exactly 
j low types and (N-j) high types; qj= probability the public good is produced if there 
are exactly j low types and (N-j) high types. 

We represent mechanisms in this form by 

1(al, a2, q)-=[ao, . . . . a1, . . . .a29 qo,. . qN]. 

11 is feasible if and only if there is a feasible symmetric direct mechanism p which yields 
q. It is shown in the Appendix, Lemma 11, that tq is feasible if, for k = o. .. , N, 

qke[O, 1] (1.1) 

ka' + (N-k)a2 >?Kqk (1.2) 

a]=0, a 2 =0 (1.3) 

and 

akeA_CO(X) fori=1,2 (1.4) 

and, fork=1,.. .,N-1, 

a'> [ ~K- (N- k)x - (N -k)5c 
a- >qk max x k +(l-qk) max k (1.5) 

ak= q, max {x, N } + (I qk) max {x, "} (1.6) 

where x=min {xeX}, x=max {xeX}, and CO(X) is the convex hull of X; that is, A= 
x, x]. 

There are three special cases of interest. If unlimited transfers are possible then A = 
X= (-oo, +oo) and (1.5) and (1.6) are never binding. If there are lower bounds on con- 
sumption then A =X=(-oo, 1] and, again, (1.5) and (1.6) do not bind. If no transfers 
are possible, X={0, 11, A=[0, 1] and (1.5) and (1.6) may come into play as 
ak >qk max {0, K- (N-k)/k} and a 2> max {0, K-k/N-k}. The necessity for (1.5) and 
(1.6) arises because of the fact that ye {0, 11. If large subsidies or taxes are possible then 
lotteries and transfers can be used to convexify everything without (1.5) and (1.6). Limited 
transfers and discreteness of either or both X and feasible y requires additional care. 

2.3. Feasible reduced-form allocation rules 

An individual's interim8 expected utility depends only on her type and two "reduced form" 
numbers representing that individual's expected transfer and the probability of public 
good production, given her type. Denoting these by (Ql, a,) and (Q2, a2) respectively for 
the two types, we have 

Q, (q) ^?= 1 T qj+ l(2.1 ) 

2(N ( N q (2.2) 

8. Interim means i knows her own v' but not that of the others. 
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al(a)= zj_' (N 1 ) 'r(I ) a (3.1) 

a4(a) = 0 ( 7)1r(I-r j a (3.2) 

We will say (Q, a) is a feasible reduced form if and only if there exists a feasible 77= 
(a', a2, q) such that (2) and (3) are true. We will say Q is feasible if and only if ]qke [0, 1] Vk 
such that (2) is true. We illustrate reduced forms with three examples: 

1. Lindahl-optimalpublic goodpproduction (Q0). According to this production rule, the 
public good is produced if and only if the sum of the marginal rates of substitution, 

n ,1 /vi, exceeds the marginal rate of transformation, K. Lettingj? N denote the 
number of low-cost types, this says that q = 1 if and only if j/vl + (N-j)/v2 >K, 
or q= 1 if and only if j>j0=max f{0, v(v2K-N)/(v2-vi)}. Thus, 
(Qp, Q?) is given by: 

Q, = EJ-]- =J J [j -[ 

0 N (N-1) j( - 

2. Conditional Lottery Draft (QL', aL). Under this rule the good is produced if and 
only if j> j*, where j* is some fixed number between 0 and n. If it is produced, 
taxes are raised by randomly "drafting" K individuals and taxing their entire 
endowment. Thus (QL, QL) is given just as in Q?, except with j* replacing j0, and 
(a L ,aL ) = ((KIN) Q1, (KIN) QL). 

3. Conditional Least-Cost Mechanism (QLC, aLC). In this case, QLC= QL, given j*, 
but whenever possible v,-types are taxed. The only time V2-types are taxed is when 
the number of VI-types is less than K, but greater than j*. Thus: 

a] -' (N J) 1(1 )N min {1I} 

aLC EN- J y1r ax{f - 

Finally, observe that in all of the above examples, the budget balances. This is not 
required by feasibility. For example, the disastrous reduced-form mechanism Q, = 
Q2 =0, a1 = a2 = 1 is a feasible reduced form. However, as we will show below, 
"budget balance" is implied by interim incentive efficiency. 

2.4. Incentive compatible allocation rules 

Because interim utility depends only on Q, a and Vk, we call V(Q, a, Vk) = Qk- akVk the 
interim utility for type Vk. A reduced-form allocation rule (Q, a) is incentive compatible 
if and only if, for all Vk, vje T, V(Q, a, Vk) ? Qj- ajvk. Observe that incentive compatibility 
of (Q, a) is independent of the particular normalization of utility. 
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In addition to feasibility and incentive compatibility constraints, it is a common 
practice to impose some sort of requirement on the mechanism that participation be 
voluntary.9 This may be interpreted as either a conservative judgement by the planner 
respecting prior "utility claims" of the individual, restrictions based on legal standards 
respecting property rights, or a lack of sufficient enforcement power by the planner to 
impose such allocations. In Section 3, we will solve the optimal mechanism problem in 
the absence of any such constraints. In Section 4 we will analyse exactly how these con- 
straints affect the properties of the optimal mechanism. 

2.5. Optimality 

In this paper, we characterize the interim incentive efficient frontier corresponding to all 
type-dependent welfare weights that are symmetric across individuals (i.e. anonymous).'0 
For our problem (see Holmstrom and Myerson (1983)), this means that for each 2?0 
we look for reduced-form allocation rules that maximize 

ar(Q - via,) + (1- ir)(Q2- V2a2) (E) 

subject to incentive compatibility and feasibility. One might wonder why, instead of map- 
ping out the (symmetric) interim efficiency frontier we do not simply find an ex ante 
optimal symmetric mechanism as in Myerson (1981) and Myerson and Satterthwaite 
(1983). Actually, in our problem, the ex ante optimal allocation rule is simply a particular 
point on the interim efficiency frontier, corresponding to X= 1. In fact, each of the other 
points on the frontier (2A 1) corresponds to an ex ante optimal allocation rule for a 
different normalization of the utility functions." For example, the allocation rule that 
maximizes (E) subject to to incentive compatibility and feasibility when A= v2/v, corre- 
sponds to the ex ante incentive efficient rule in the case where utility functions are normal- 
ized as in Green-Laffont or d'Aspremont-Gerard-Varet (r'q - a') instead of our 
normalization (q - v'a'). In this sense, one can view our approach of characterizing the 
symmetric interim efficient frontier as equivalent to characterizing the set of allocation 
rules that are ex ante efficient for some normalization of the utility functions.'2 

2.6. Summary 

Bringing together all the assumptions, comments, and observations above, we can summar- 
ize the problem of characterizing all interim-efficient public good production and cost 
allocation mechanisms. The main points follow. 

1. We assume agents satisfy the expected utility hypothesis (they act as if they maxim- 
ize expected utility) with risk-neutral, quasi-linear preferences. 

9. Rob (1989) and Mailath and Postlewaite (1990) have recently analysed these constraints in the context 
of public goods problems. Much of the initial work on optimal public goods mechanisms did not impose 
individual rationality constraints. 

10. We do not address the problem of optimal mechanisms with welfare weights that may depend on 
individual as well as type. Also, at least in the unlimited transfer case, optimal mechanisms may fail to exist 
with asymmetric weights, since optimality would call for arbitrarily large type-independent transfers between 
agents. 

11. See d'Aspremont and Gerard-Varet (1989) for a related discussion. 
12. Implicit in this statement is that the choice of normalization is the same across agents. The implications 

of considering different normalizations for different individuals in the eY ante optimization problem are similar 
to the implications of non-anonymous type-dependent welfare weights in our interim optimization problem. 
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2. The revelation principle and the hypothesis of Bayes-Nash equilibrium behaviour 
allow us to restrict attention to feasible and incentive compatible direct 
mechanisms. 

3. We restrict attention to symmetric mechanisms. 
4. There are only 2 types. 
5. We are interested in the class of symmetric interim efficient mechanisms for the 

normalization u'= q - v'a'. This is equivalent to the class of symmetric ex ante 
efficient mechanisms for all normalizations. 

We can, therefore, solve our problem in two steps. First, for each A > 0: choose the reduced 
form (Q, a) to solve 

max Air(Q I - via,) + (1-Ir)(Q2-v2a2) (P) 

subject to: 

QI-vIa1?Q2-vIa2 (4.1) 

Q2-v2a2 _ Q l-v2ai (4.2) 

(Q, a) feasible (1)-(3) 

where (4.1)-(4.2) require (Q, a) to be incentive compatible. Second, construct a feasible 
direct mechanism p which implements the optimal solution to (P). We turn to the first 
of these tasks next. 

3. CHARACTERIZATION OF OPTIMAL RULES 
In this section we characterize the class of interim-efficient, incentive-compatible mecha- 
nisms for public good provision and cost allocation under a variety of different assumptions 
about transferability of the private good. We do this by substituting a simpler but equiva- 
lent problem for (P). 

First, we rewrite (4.1) and (4.2) using two results. Incentive compatibility immediately 
implies that Ql >- Q2 and a, ?a2. This is a standard result and is proved in Lemma 3 of 
the Appendix. Second, in Lemmas 4, 5 and 6 we prove that any solution to (P) must 
satisfy a=(K/N)Q, where d=;ra I+(1 -ir)a2 and Q=IrQI +(1 -7r)Q2. That is, there is 
no waste. Production always takes place on the production possibilities frontier. This 
simplifies the analysis. Substituting a= (K/N) Q into (4.1) and (4.2) gives: 

a, -N Q +-( - f)(Q-_Q2)=ICU(Q)(I 

al_-Q+-(1-Ir)(Q-Q2)=IC(Q) (2) 
N V2 

Notice that Ql _ Q2--ICU(Q) _ ICL(Q) which is also true with strict inequalities. 
A second set of constraints relate to feasibility. The first such constraint is on Q= 

(Q', Q2) and comes from (1.1), (2.1), and (2.2). We represent the set of feasible (Ql, Q2) 
in the following way. For any Q1 e[0, 1] define Q2(QI)=min {Q2J1 q=(qo, * .. , qN) feas- 
ible such that Q2 = Q2(q) and Q 1= Q1(q)}. This function is well-defined since the set of 
feasible q is compact and Q1(q) and Q2(q), as defined by (2) and (3), are both continuous 
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Q2 

ir3+3,r(I -r)2__ 

,r3+3 l -32j _ -r) 

QF 'Q2(Q1) 

3f OT 32r11) 1 Qi 
X3 + 37r(1 r)2 

FIGURE 1 
The set of QF when N=4 

in q and the set of q such that Q, = Q1(q) is non-empty for all Q, e[0, 1]. Define 

QF= {(QI, Q2)I1 I > Q I> Q2>O andQ2> Q2(QI)}. (3) 

It follows immediately from definitions that QeQF if and only if Q is a feasible 
reduced form and Ql_?Q2. The set QF iS illustrated in Figure 1. We summarize the 
properties of QF in the following proposition: 

Proposition. QF is a convex polygon, with a boundary defined by N+ 1 vertices that 
correspond to the j* conditional mechanisms: 

Q ~N I (N-1 )fNfi(1 
Ql =EJ =J _I 7r;(-r 

Q2=ZJ J (N 1)1(1 

forj*=O, 1,...,N. 

Proof. By the definitions of Q' and Q2 in equations (1) and (2), one can characterize 
Q2(QI) in terms of qo, . . . , qN. Specifically, for QI <_NI, we get Q2(QI)=O, since we 
can produce (Q I, 0) in this region by setting q0, . . . , qN_ I all equal to 0, and setting qN= 
Q I7 rN- '. For any Q > irN- 1, Q 2 (Q') must be strictly positive because qi>0 for some 
i<N. For values of Q'>1rN-', Q2 (Q') is obtained by setting qN-=1 and choosing 
ql,.. . , qN-1 to minimize 
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subject to 

Q q N-1 (N_ )ri(I _ K)N -i-1 Ie01 j=I N- 

Since (8Q21/)/(8Q1/8qj) = (N-j) /]j(l - r) is decreasing inj, the solution to this linear 
minimization problem is given by a pair (j*, 0) such that qi= 1 for N_ j>j*, qi= 0 for 
0<j<j* and qi=0 forj=j*. The result follows immediately. 11 

The other constraints involve joint restrictions on Q and a that depend on the restric- 
tions on transfers. Specifically, we show in Lemma 7 that there exist piecewise-linear 
functions, L(Q) and U(Q) such that (Q, a) is feasible and a =(K/N)Q if and only if 
Qe QF and L(Q) < a I < U(Q). This is a reduced-form representation of the constraints on 
transfers, and will depend on the possibilities for transfers (the set A). For example, with 
unlimited transfers, L(Q) = - oo and U(Q) = oo for all Q, so the constraints are never 
binding. Things are more complicated in the no bankruptcy and no transfers cases, which 
are taken up later. 

From above, we can replace (1)-(3) in (P), and write a simplified reduced-form 
problem (R) for each A>0, as: choose (Q, al) to 

maximize ir Q' 2 1 +2 - 70QQ2[1 K?V21+Ir(V2)-AUv)al (R) 

subject to 
al < ICu(Q) (4.1) 

a, ?ICL(Q) (4.2) 

QC-QF (5.1) 

L(Q) < a I < U(Q) (5.2) 

The constraints (5.1) and (5.2), replace (1) (2) and (3) in (P). It is easy to show: 

Theorem 1. (Q, a,) solves (R) and a2=(KQ/N-iral)/(l-ir) if and only if (Q, a) 
solves (P). 

Proof Uses Lemmas 3, 5, 6, and 7. II 

Thus the solutions to (R) for (Q, a l) as we vary Ae [0, oo) characterize all interim-efficient 
mechanisms. Since (5.2) depends on the set of feasible transfers, we split the characteriza- 
tion into two parts: unlimited and limited transfers. 

3.1. Unconstrained transfers of the private good 
By unconstrained transfers, we mean that a; can be any real number. That is A = 9 and 
(a, q) is feasible iff (1 .1 )-(1.4). Implicitly, this means that the private good can be treated as 
continuous rather than lumpy, and there are no lower or upper bounds on any individual's 
consumption. 

In this case L(Q) =-oo and U(Q) = oo, so constraint (5.2) drops out. The solution 
to (R) can be split into three cases which depend on the value of A, the welfare weight 
placed on low-cost types. 
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Theorem 2. If <V2/VI, (Q, a) is an optimal mechanism ifand only if: 
a I = ICU(Q) 

K- (A) 
a=-Q 

N 

and Q maximizes 

[rQ 
K 

]2 
+ 

I-)Q2[ 
I - K 

ir(v,,- Xvl)ICu(Q) 

subject to QEQF. 

Proof. Since v2 > Av, we want ai to be as large as possible for any Q, subject to 
incentive compatibility. Therefore a, =ICu(Q). Then (4.2) is not binding. Substitute for 
a, in the objective function and eliminate (5.2) in (R) to finish. 11 

Theorem 3. If A> V2/VI, then (Q, a) is an optimzal mechanism if and only if: 
aI = ICL(Q) 

Ka- 
N 

and Q maximizes 

ir Q' KR V2 + ( 1- r)Q2 [I- 
K 

V2] + 7*(2 -AV,)ICLQ) 

subject to QCQF. 

Proof. Same as proof of Theorem 1 but a, is now chosen as small as possible so 
(4.2) binds, and (4.1) is slack. 11 

Theorem 4. If Av, = V2, then (Q, a) is an optimal mechanism if and only if: 
K - 
N 

ICL(Q) < a} ICU(Q) 

and Q maximizes 

7T[I 

K 
Q,+(I - r)[ I- 

K 
Q2 

subject to QGQF. 

Proof Substitution of v2/v, for A in the objective function eliminates a from the 
objective function, so the optimal Q is compatible with a range of a's. This results in a 
first-best solution, since the incentive compatibility constraints can be satisifed with strict 
inequality. 11 
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FIGURE 2 
Optimal reduced-form public good production for two welfare weights, A < A'. Optimal levels are vertices marked 
Q*(A) and Q*(A'), respectively. Level surfaces of the objective function, E(Q1, Q2), are marked EA and EA, 

respectively, with arrows indicating the direction of the gradient vector 

Several observations can be made. With unlimited transfers (and a linear utility struc- 
ture) the private good is used to transfer welfare subject to incentive compatibility con- 
straints. For example, if AvI <v2 and if incentives were not an issue, optimality would 
require an infinite transfer from low-cost types to high-cost types, no matter what Q is. 
But then low types would pretend to be high types. That incentive to misrepresent is 
prevented by the incentive constraint (4.1). Thus, the private good is always transferred 
to the extent allowed by incentive constraints. This determines an optimal incentive com- 
patible financing scheme for each possible Q. Then Q is chosen so the welfare from Q net 
of the loss from its financing is optimal. At this point, the only incentive constraint is 
Ql > Q2 and to determine the transfers. This means that the class of interim-efficient 
mechanisms is simply represented by the boundary of QF. The only role incentive compat- 
ibility plays is to rule out mechanisms where Q2> Ql . It is not until one wants to select a 
mechanism for a particular welfare weight, A, on low types that the actual incentive 
constraints become important. Then, they have a similar effect to that noticed by Myerson 
(1981). They create a new "virtual utility" function but do not affect the feasible set. 

We have the following summary Theorem,'3 which is illustrated in Figure 2. 

Theorem 5. The set of interimn efficient mechanisms for public good production and 
cost allocation with unlimited transfers is {(Q, a) I Qe lower boundary of QF, and (Q, a) is 
incentive compatible}. For almost all A, the interim efficient mechanism is a vertex of QF. 

This completes the first step in solving (P). The second step involves identifying direct 
(non-reduced form) mechanisms which yield the desired reduced form. The following 
result shows how to do this. 

13. We conjecture that a version of this theorem is also true for a continuum of types. The technical 
problem in proving this is characterizing QF. See Ledyard and Palfrey (1989). 
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Theorem 6. For any parameters (K, N, ir, VI, V2, A) there exists a j* such that it is 
interim efficient to produce the public good if and only ifj > j*. 

Proof. Recall that QF is a convex polygon, with a boundary consisting of N+ 1 
vertices. Since the objective function is linear in Q1 and Q2 and the boundary of QF is 
piecewise-linear, the objective function achieves its maximum at a vertex for all maximiza- 
tion problems in Theorems 2, 3, and 4. 11 

We can see that there are only two kinds of mechanisms that solve our problem. In 
the first kind, the good is always produced, Q1 = Q2 = 1, can be financed by a lottery draft, 
al = al = K/N. Pooling of types is efficient and, in Theorem 6, j* = 0. More precisely, 

Corollary 7. If A < v2/v1, then qj =1, ajl = K/N, a2 = K/N Vj is an optimal solution to 
(P) if and only if 

L N ]Arv1 + (I - i)V2 

Proof. From Theorem 2, if 2. < v2/v1, the objective function is 

E(QI, Q2)=rQ( A -V2) +(I -7r)Q2(1-K V2)+ r(V2-AvI) ICU(Q) 

Notice that OE/@Q1 = r(l/v1 - K/N)(Avir + (1 - 7r)V2) > 0. Therefore Q* = (1, 1) is opti- 
mal if and only if @E/8Q2?0. The result follows immediately since 

OEI cQ2 =(I I-7r) [-)(viD ir + (I I- r)V2) _ (V2 
- 

V)],1 ~~~~ 
V-VIV 

Corollary 8. If > V2/VI, then qj= 1, aj = K/N, aj = (K/N) Vj is an optimal solution 
to (P) if and only if 1 _ (K/N)v2. 

Proof. From Theorem 3, when 2.v2/vI, the objective function is 

E=irQ,(2-K(V2 ) (+ -7r)Q2( -K V2)+ ir(V2-AVO)ICL(Q) 

Now 

DE/8Q1 = L(!K(Av1i + )V2) +1(V2-VI) v2 NV2 J 

and 

0E1/'Q2 (1- 7) (-v)(VI f+ (I - r)V2)] 

To show (if), notice that if I > (K/N)v2 then OE/8QI > 0 and OE/@Qa > 0. To show (only 
if), observe that if 1 < (K/N)v2 then OE/8Q2 <0, so Q = (1, 1) cannot be optimal. 11 
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For comparison to Corollary 7, note that 1 > (K/N)v2 iff [1 -(K/N)vI]_ (V2-v,)/ 
v2 . An interesting implication of Corollaries 7 and 8 is that if 1 < (K/N)v2 then Q* = (1, 1) 
is never optimal. Lottery drafts with Q = 1 are never optimal when it is ex post inefficient 
to produce the public good if everyone is a high-cost type. 

In the second kind of mechanism, the good is not produced unless there are sufficiently 
many low-cost types. This happens if it is less costly to induce revelation of preference by 
restricting production when there are too many high types than by using the private good. 
This will be true if the (relative) welfare weight on the high-cost type is large enough so 
that it is importanat to avoid lotteries (pooling) and to differentiate between types (separat- 
ing). More precisely, 

Corollary 9. If _! V2/v1 and [I -(K/N)vl]< (v2-vv)/(Arv + (I -r)V2), then the 
optimal mechanism is to produce the public good if and only if the numnber of low types is 
larger than j*, with j* equal to the smallest j such that 

J > (I 1- (KIN)vi )(Arv, + (I 1- r)V2) 
N (V2-v,) 

Proof. From Figure 2 we want the smallest j such that the slope of the indifference 
lines of the objective function is greater than or equal to the slope of the constraint set, 
given by the boundary of QF. That is, we want the smallest j such that 

-41 - (K/N)v][Airv + (1 - )V2 > (N-j)fr 
[1 - ][- (K/N)v][2Arv, + (1- Ir)V21 + [V - V211 j(= - r 

An analogous result holds if A_ ? v2/vl. In particular j* is the smallest j such that 

J - (1 - (K/N)V2)(4zv, + (1 -)V2) 

N =ZA (V2-vI) 

There are two interesting special cases. If A= v2/vI, we have the transfer-neutral 
model, which turns out to be the knife-edge case that separates Theorem 2 and Theorem 
3. That is, individual utilities are normalized to cq'- a' so that every type's marginal utility 
of the private good is 1, and the welfare function is the expected value of ciq -a'. In this 
case A2uvI + (1 -r)V2 = v2 . To find the optimal mechanism as in Corollary 9, 
we want the minimum j>O such that j[1-(K/N)v,Jv2+ (N-j)[[1 -(K/ 
N)v11v2-(v2-v,)I>0. That is, we want the minimum j such that j[1/v,-K/ 
N]+(N-j)[1/V2-K/N] >0 or j[ct-K/N]+(N-])[C2-K/N]>O. But this is just the 
first-best solution: the good is produced if and only if jcl + (N-j)c2 >K. 

With A= v2/vI, the range of cost allocations which induce incentive compatibility is 
given in Theorem 4. A particularly simple mechanism is a lottery'4 where K of the N 
individuals are randomly selected to contribute all their endowment for the public good, 
whenever at least j* individuals report that they are low-cost types. One can interpret this 
as a conditional lottery draft, that is preceded by a vote between producing and not 
producing the public good. The vote outcome is determined by a weighted majority rule 
where j* of N must vote in favour, in order for production to arise. Low-cost types vote 
for it and high-cost types vote against it. This corresponds to aI =(K/N)Ql, and a2 = 
(K/N)Q2, and does satisfy incentive compatibility. 

14. If the endowment were divisible, each member could be taxed an i.mount K/N from their endowment 
whenever the public good is produced. 
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A second interesting case occurs when A= 1 (covered by Theorem 2): the problem 
studied in the social dilemma literature.'5 In this case we find that, even if 1 - (K/N)v2 > 0, 
and therefore it is common knowledge that benefits exceed costs with probability 1, it may 
be optimal not to produce with probability 1. In fact if A< v2/v1 and (v2- v1) > [1 - (K/ 
N)vl][n?rv + (1 - r)V2] then Q2< Ql < 1 in the optimal mechanism.'6 The reason is simple: 
the distribution of taxes is more important than optimal production. 

As A changes, the feasible set QF does not change but the slope of the indifference 
lines of the objective function does change. As A increases, the indifference lines become 
steeper (see Lemma 8 in the Appendix), so the expected output of the optimal mechanism 
(weakly) increases.'7 There is no discontinuity at AvI = V2 . 

An increase in A implies a higher welfare weight on low-cost types, who like output 
relatively more than the high-cost types. Only for A= (v2/vI), are there no welfare gains 
from redistribution of the private good. For A> (v2/v1) the low types are relatively more 
important and, therefore, the efficient mechanism may provide an expected output higher 
than first best, resulting in overproduction of the public good. For A< (v2/v1) the high 
cost types are relatively more important and, therefore, the efficient mechanism provides 
an expected output lower than first best, resulting in underproduction of the public good. 
Interim efficiency does not necessarily imply the first-best solution because of the trade- 
off between the use of transfer payments for incentive compatibility and possible welfare 
gains from cost allocation. 

3.2. Limited transfers of the private good 

In many applications it is illegal or impossible to fully compensate individuals who contri- 
bute to the production of the public good. In pure voluntary contributions situations, no 
compensation is possible so X = {0, I} (A = [0, 1]); an agent can only contribute or not'8 
(perhaps with some probability). A less restrictive situation arises when compensation is 
possible but taxation is limited by a no-bankruptcy condition so that no taxation is allowed 
which would leave an agent with negative amounts of the private good. Here X = (-sX, I]; 
an agent cannot be taxed more than the initial endowment. 

The impact of constraints on possible transfers can be easily seen by referring to the 
maximation problem (R) in Section 3.0, particularly constraint (5.2). Under limited trans- 
fers L(Q),> - and U(Q) < oo, and it is possible that (5.2) will bind at the optimum. If 
AvI <v2 then the solution to (R) will involve making a, as large as possible, whatever 
QeQ1 is chosen. Thus al will equal the smaller of U(Q) or (KIN)Q+(1- )(QI-Q2)/ 
v1. An analogous condition holds if AvI > v2. Of course Q must be restricted so that an 
a, satisfying (4) and (5) exists but, as we will soon see, if Qe QF we will not need to worry 
about that when lottery drafts are a feasible financing option, i.e. when [0, 1] (A. To 
formalize this intuition define: 

H(Q) = max {L(Q), ICL(Q)} 

15. See Van de Kragt, Orbell and Dawes (1983), Palfrey and Rosenthal (1984, 1988, 1990, 1991) and 
Rapoport (1985). 

16. To see that these conditions are not vacuous pick ir large, v, small, and v2 close to 1. 
17. It is easy to see a similar effect happens if K is decreased or N is increased or V2 decreases or r increases. 

Of course when N or ir are increased, QF changes. 
18. If we assume divisibility (X= [0, 1]) then an agent can contribute part of his endowment. Since A = 

[0, 1], the formal results for the limited transfer case are the same whether or not divisibility is assumed. With 
divisibility, it would be possible to tax K/N of each individual's private good endowment. 
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and 
G(Q) = min { U(Q), ICu(Q)} 

and 

S(Q A) ={ H(Q) if AvI > v2 
G(Q) if AvI < V2 

When AvI = v2, let S(Q, A) be any number such that'9 Se[H(Q), G(Q)]. The following 
theorem generalizes Theorems 2, 3, and 4 to any limitations on transfers such that 
[0, 1] A. 

Theorem 10. Let [0, 1] A. (Q, a) is an interim-efficient mechanism for A (that is, it 
solves (R)) if and only if a solves 

a, =S(Q, ) 

K- 
N 

and Q solves 

max irQ[ 
K 

V2j?(l -( r)Q2[l -KV21+ff(V2- AV,)S(Q, ) 

subject to 

QCEQF. 

Proof. Case 1: AvI > V2. We need at satisfying (4) and (5) and as small as possible. 
This means that whatever Q is chosen, we want a, = H(Q). Substitute this for al in the 
objective function of (R). 

We can find such an a, satisfying (4) and (5) for a given Q if and only if 

ICL(Q) ? U(Q) (6.1) 

ICu(Q) L(Q) (6.2) 

By Lemma 9 and Lemma 10, (6.2) is true for all Qe QF. By Lemma 10, if 1 <(K/N)v2 
then (6.1) is true for all QeQF. If 1 (K/N)v2, we know from Corollary 8 that Q*= 
(1, 1) is optimal if (5) is ignored. But (5) is satisfied at Q*=(1, 1). 

Case 2: AvI = v2. Using the same analysis as that following Corollary 9 in Section 
3.1, the first best solution is attainable with a lottery draft. (See footnote 15.) 

Case 3: Av, < v2. Here we need a, as large as possible subject to (4) and (5). Let a I 
G(Q). In order for such an a, to be feasible, Q must satisfy (6). By Lemmas 9 and 10, 
(6.2) is true for any QEQF. By Lemma 10, if 1 <(K/N)v2 then (6.1) is true for QeQF. If 
1 > (K/N)v2, suppose (6.1) is binding at the optimum to (R). Then ICL(Q) = 

U(Q)<ICu(Q) and Q,>Q2 since if Q1=Q2, then (K/N)Q=(K/N)QI<U(Q) and (6.1) 
would not bind. Now consider a change from the optimal Q caused by increasing Q2 

19. When QEQF, (K/N)QI ([H(Q), G(Q)]. So if lottery drafts are feasible, then [H(Q), G(Q)J is non- 
empty for all QGQF. 
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slightly. Since a = U(Q) < ICu(Q), the objective function change by 

AQ2 I - K 
V2 (1-ir) +y(U2- XV0i9U1i92. 

Since 1 > (K/N)v2 and d U/0Q2 > 0, an increase in Q2 increases the objective function. 
Further the left-hand side of (6.1) declines as Q2 increases and the right hand side increases 
as Q2 increases. Therefore (6.1) cannot bind at an optimum. 

Several questions now arise, including: 
1. When is the interim-efficient mechanism for limited transfers the same as that for 

unlimited transfers? 
2. Is the characterization in Theorem 6 still valid with limited transfers? 
We already know when XvI = v2, as long as [0, 1] c A, the first-best output financed 

by a lottery-draft is an interim efficient mechanism. Limitations on transfers have no effect 
and the analysis of Section 3.1 remains valid. If Xv, # v2, that is no longer true. 

Suppose we were to solve (R) ignoring the transfer constraints (5.2). This is the 
unlimited transfer solution (Q*, a*). If Xv, < v2 and U(Q*) ?ICu(Q*) then Q* also solves 
(R). If Xv, > v2 and L(Q*) <ICL(Q*) then Q* also solves (R). Therefore, one possibility 
is that transfer limitation will have no effect. 

Next, define the (modified) first-best solution as that (Q, a) which solves20 

( N ) ( N )) 
subject to QEQF, = (K/N)Q, and L(Q) <aI < U(Q). Suppose Xv, <v2, Q** is the modi- 
fied first-best solution, and U(Q**) <ICu(Q**). Or alternatively Xv, > V2 and 
L(Q**) > ICL(Q**). Then Q** solves (R). This gives us a second class of possible solutions. 

The intuition behind these two cases is straightforward. If, for example, Xv, < v2 then 
relatively more weight is placed on high-cost types so that the optimal solution (without 
incentive constraints) makes a, as large as possible. If transfer constraints are tight and 
that transfer is incentive compatible then the modified first-best solution is optimal and 
this is the end of the story. lf, however, large transfers are possible then as al is increased 
incentive compatibility eventually bites. Once that happens, transfer limits become irrele- 
vant. For Xv, < v2, when ICduQ) < U(Q) the production Q must be financed subject to 
incentive compatibility. 

There does remain, however, a third possibility 2 where, for XvI < v2, 
U(Q*) < ICu(Q*) 

20. A true first-best optimization would allow Q, < Q2. 
21. A fourth possibility, where both 

U(Q*) ?ICU(Q*) 
and 

U(Q**) ?ICu(Q**) 
with one strict inequality cannot happen. If it could, then 

(rQ N 2 +( -)Q2 1l N V2) + r(V2 -;V )1CU Q*) 

Q IV2)+(1 
7)Q (1 -N 2) + ir(v2 -Av,)ICu(Q**) 

?rQ* KI2)+(Vr)Q**(l N 2)+7(V- ViICu(Q) 
Also 

If Q* (N V, 02+( - ,)Q2**( -N V2 +r(V:t- LVI)U(Q**) [continued over] 
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and 

U(Q**) > ICu(Q**) 

Consider the revised problems and solutions where Q solves max irQ, (A- (K/ 
N)v2) + (1- r)Q2(1- (K/N)v2) + ir(V2 - 2VI)ICu(Q) subject to Qe QFand ICu(Q) < U(Q), 
and where Q solves max rQ,(2-(K/N)V2) + (1-r)Q2(1-(K/N)v2)?+ r(V2-uv ) U(Q) 
subject to U(Q) IC,u(Q). If either ICu(Q) < U(Q) or ICu(Q)> U(Q) then we are in a 
previous case. Therefore ICu(Q) = U(Q) and ICu(Q) = U(Q). Thus, Q= Q. 

We can now answer our first question for 2vI < V2. 

Theorem 11. (a) Let Q solve 

max NrQi(A-K V2)? (1 - r)Q2- 2)?Kc(v2- 1V2 )ICU(Q) 

subject to Qe QF and ICu(Q) < U(Q). If ICU(Q) < U(Q) then Q is interim-efficient and Q 
is the same as if there were no limits on transfers. 

(b) Let Q solve max ,rQ1 (-(K/N)v2) + (1 -)Q2(1-(K/N)V2) + 7(v2-AvI) U(Q) 
subject to QE QF and U(Q) _ ICU(Q). If U() < ICU() + 1 /VI ( -,r)(Q,-Q2) then Q is 
interim-efficient and Q is the first-best solution (subject to Ql > Q2). 

(c) If ICu(Q) = U(Q) in (a) and if ICL(Q) = U(Q) in (b), then Q= Q is interim-efficient 
for A and may be neither first-best nor identical to the unlimited transfer solution. 

(d) ICu(Q) < U(Q) and ICL(Q) > U(Q) not possible. 

Proof. See above. 11 

Part (a) of the theorem characterizes when the unlimited transfer solution remains 
unaffected by restrictions on transfers. For example, if a mechanism financed by lottery- 
draft is interim-efficient with unlimited transfers it remains so even with tight restrictions 
on transfers if [0, 1] c A. Part (b) identifies when the solution is first best, in the restricted 
sense given the transfer technology. Part (c) identifies when the solution differs from the 
unlimited transfer case in a substantial way. 

To answer the second question about the characterization in Theorem 6 we need to 
explore case (c) of the Theorem above more deeply. In particular, if )vI < v2, ICU(Q) = 
U(Q), ICU(M) = U(Q), and Q = Q then can it be that Qe Interior (QF)? The answer is no. 

To see this, suppose Q does not lie on the right boundary of QF. Then there exists a 
point in QF, Q'= (Q', Q2) such that Q > Q' and, U(Q') > U(Q) (Lemma 12). If [Q', U(Q')] 
satisfies the incentive constraint for low-cost types (U(Q') < ICu(Q')) we are done since 
this will contradict Q maximizing 7rQl(?- (K/N)v2) + (1 - r)Q2(1 - (K/N)v2) + 
7r(v2 - AV) U(Q) subject to U(Q) ?ICu(Q). If [Q', U(Q')] violates incentive compatibility 
for low-cost types, then compare the mechanisms [Q', a'] with a = U(Q') versus [Q, a] 

21. (Continued) 

> 
(EQ 

K 
2) (+ 

0 )Q2 K1NV2 +7E(V2-XV1)U(Q*) 

Thus 
ICU(Q*) - U(Q*) >IC(Q**)- U(Q**)>O 

with one strict, which is a contradiction. 
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with a1 = U(Q). Since [Q', a'j violates incentive compatibility for low types and [Q, aQ 
satisfies that same constant, it must be that d2< d2. This implies that there exists a way 
to finance Q' so that a2 =2, in which case [Q, a'] is incentive compatible. But since Q'> Q 
this means that a,> U(Q). Therefore, we compare two mechanisms Q and Q', with 

(1) Q2= Q2 

(2) a2= a2 
(3) Qi<Q 
(4) a <a, 

where (Q, a) satisfies (4.1) strictly and (4.2) is slack, and inJQ', a'] (4.1) is slack. Since 
,,VI2, (Q',a') generates higher expected welfare than (Q,a). Furthermore, for all 

0 <? < 1, (Qg, a) = e(Q, a) ? (1-e)(Q', a') generates higher expected welfare than 
(Q, a), and will satisfy (4.1) and (4.2) if ? is close to 1. 

Theorem 12. If [0, 11 c A*, then for any parameters (K, N, ,r, vl, V2, A) there exists 
j* such that it is interimi-efficient to produce the public good if the number of low types 
(v=vI) is >j*. 

4. EXTENSIONS 

4.1. Large populations 

We consider a sequence of economies indexed by the number of agents in the population. 
As N increases, the total amount of private good needed to produce the public good is 
denoted K(N) <N. We assume limsupNO K(N)/N= liminfN,O K(N)/N-k and assume 
that O<k< 1. 

There are three parts of the optimization problem that can change as N grows: the 
objective function, the feasible set, and the incentive constraints. We first consider the 
effects on the feasible set. 

Because the right-hand boundary of QF is piecewise-linear for every N, the maximum 
difference Q1-Q2 is achieved at one of the vertices. This difference at a vertex is easy to 
compute. From equations (2) and (3) and the characterization of QF before Theorem 1 
we can characterize the sequence of feasible sets { QN). At each vertex except (0, 0), we 
have, for some me{0, . . . , N- I} 

Ql L. ( ) X X( 1-r ) -J- Q J E=111-I 

Q JZ) 

Recall that vertex m corresponds to a mechanism whereby the public good is produced if 
and only if there are at least m low-cost types. The next theorem follows immediately. 

Theorem 13. Fix ire(0, 1). For any ?>0, 3N* such that for all N>N* 



346 REVIEW OF ECONOMIC STUDIES 

Proof. From above, for every N, 

QI-Q2 < max,,1=1 ... N-I 
I 

_) 
?n - ) 

It is well known that the right-hand side, which is the likelihood of the most likely number 
of successes out of N- 1 independent Bernoulli trials, converges to 0, as N gets larger. 11 

Therefore, in the limit both types (interim) expect the same public good production, 
i.e. QF converges to the set of all convex combinations between full production (Q = 1) 
and no production (Q = 0). It is important to note that this result depends only on the 
feasibility of allowing output to depend on the number of low types. The result does not 
even depend on K(N). It says nothing about whether the free-rider problem gets better or 
worse in N, since incentive constraints play no role. 

By the linearity of the objective function, the interim efficient output will be an 
extreme point. If (Air + 1 - ,r) <k[Airvi + (1 - r)v2] then, in the limit, the interim efficient 
mechanism will have zero production. If (Air +1 - zr) > k[ALrv1 + (1 - r)v2] then, in the 
limit, the interim-efficient mechanism will have full production. This is essentially a law 
of large numbers result. The proportion of v1-types converges to 1r almost surely in N. 
Consequently, in the limit economy the optimal Q is known to be either 0 or 1, depending 
on the direction of the above inequality.22 Since Ql - Q2 converges to 0 in the limit, 
incentive compatibility then implies that, in the limit, for any feasible Q, both types must 
have the same expected transfer. Optimality then implies that either a I = a2 = Oor a -a2 = 

k, depending on whether Q is 0 or 1. Thus, incentive compatibility and feasibility imply 
that in the limit only lottery drafts (or equal payments if the endowments are divisible) 
are possible.23 

4.2, Individual rationality 

A natural constraint to impose on the choice of a mechanism is that, given the rules (Q, a) 
and given a player's observation of type, vi, the player should agree to play the game. This 
leads to what are called interim individual rationality constraints. One interim individual 
rationality constraint is Q2 _ V2a2. By incentive compatibility, whenever this constraint is 
satisfied, low-cost types v, will also automatically satisfy interim individual rationality, 
since Q, - v1 a 1 > Q2 -v1a2 > Q2 - V2a2 > 0. More specifically, since the incentive compat- 
ibility constraint, for a = (K/N)(Q, is ICL(Q) ? al < ICu(Q), the interim individual rational- 
ity constraint for high-cost types may be written: 

Q2 -V2 ir_ Q- (N )0 

or 
1 1-,r K(1I 

al >--Q2 (~ Q) 
V2 1r N vr 

22. In the borderline case where k = )7r + I - ir/)7rvI + (1 - 7)v2 then in the limit every Q is optimal. 
23. More precisely, only mechanisms that generate the same interim expected utilities as a lottery draft 

are possible in the limit. 
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Q2 

7r3 +3r(1-fr)2__ 

,r3+3r2(1 _ Xr) 

r3 713 + 3+f2(1 _r) 1 Qi 
r' + 37r(1 r)2 

FIGURE 3 
Effect of individual rationality constraint, IR. The unconstrained solution, Q*(A) > Q*R(A), the IR-constrained 

solution. When IR constraint is binding, solution lies on boundary, but not typically on a vertex 

It is possible to find a1 satisfying all of this if and only if 

(VI N) 
Q2 

2 N] [v N]]0 

Thus as long as (K/N)V2 < 1, incentive compatibility guarantees that (IR) is not 
binding since Q1 ? Q2=>(IR). Notice that (K/N)v2< 1 means that it would be ex post 
efficient to produce even if all N players had high costs. 

Geometrically (IR) defines a line through the origin in (Q1, Q2) space, with the (IR) 
constraint requiring Q to lie to the lower right of the line. If (K/N)v2 < 1, then the line 
has slope greater than 1 and lies above QF. If (K/N)v2> 1, then the line has slope less 
than 1 and cuts through QF. If IR cuts the boundary of QF above the unconstrained 
solution, Q*, it is not binding. If IR cuts the boundary below Q*, it is binding and results 
in lower production (i.e. QR < Q*). See Figure 3. In no case will IR lead to greater 
production than Q*. Notice that if the slope of IR is less than 1, the only mechanism 
that treats both types the same (Q1 = Q2) involves zero production. Therefore in large 
populations, individual rationality constraints drive the optimal solution to zero produc- 
tion (Ql = Q2 = O) whenever limN o(>(K(N)/N)V2> 1. 

This provides a simple geometric interpretation for the findings in Mailath and Postle- 
waite (1990)24 and Rob (1989): in Bayesian public goods environments with independent 
types and some other minor restrictions (that rule out cases similar to limN>,X,(K(N)/ 
N)V2_< 1), the probability the public good will be produced goes to zero in the number of 
agents if interim individual rationality is imposed. Feasibility implies that, for any mecha- 
nism Ql 1 Q2 when n is large. By incentive compatibility, Q1 > Q2 implies a , a2. By 
individual rationality, 1 > kv2 implies Q 11 Q2 = O is the only possible mechanism. 

24. This is also closely related to an earlier result in Guth and Hellwig (1986, Prop. 4.5). 
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5. CONCLUDING REMARKS 
The central finding of the paper is that interim-efficient public goods provision is always 
of a particularly simple form: Given a welfare criterion A,, the public good should be 
produced if the fraction of low-cost types in the population is greater than or equal to 
j*(Q)/N. The result continues to hold up when there are restricted transfers, even if trans- 
fers are entirely ruled out.25 

Furthermore, j*(),) is decreasing in A,, the welfare weight on low-cost types. This has 
an intuitive interpretation. There is a natural benchmark, A.= v2/v1, where total welfare 
is neutral with respect to transfers and the public good is produced if and only if the sum 
of the benefits exceed its total production cost. Call this "efficient production." When A. 
increases relative to this, there is a welfare gain by shifting the burden of the cost onto 
the high-cost types, and by over-producing relative to efficient production (since low types 
favour production). When A. decreases, there is a welfare gain to shifting the burden onto 
low-cost types and (when v2 is sufficiently high) to reducing production of the public good. 
In many ways the latter case (A)< v2/v,) is a useful case to focus on. It corresponds to the 
common welfare criterion that "those who benefit the most should pay the most." Our 
result establishes that doing so entails a production inefficiency in the form of restricted 
output of the public good. 

A second set of findings relates to practical aspects of mechanism design. This is 
easily seen in the case of a very simple optimal mechanism when A.= v2/v1 . In that case 
the optimal solution can be implemented by simply having a vote between production 
and non-production. If the number voting in favour exceeds the critical level, i*(v2/vI), 
corresponding to production inefficiency, then the good is financed by randomly selecting 
K of N individuals to share the cost equally, a (conditional) lottery draft mechanism. 
Incentive compatibility implies that an equilibrium of this simple mechanism is for all low 
types to vote "yes" and all high types to vote "no."26 

Only slightly more complicated mechanisms are needed for other A. # v2/v1 and in the 
case of transfer limitations. A j*/N majority rule can still be used to determine whether 
the public good is to be produced, but a random tie-breaking rule when the number of 
Yes votes exactly equals j* may be needed when there are restricted transfers. In addition, 
lottery drafts are not generally optimal financing schemes unlessj* = 0, A = v2/v1, orj* > K. 
In the last of these cases, then lottery draft financing may be optimal when the U(Q) 
transfer constraint is binding. In that case the lottery selects K out of the j* yes voters. 
The optimality of these simple mechanisms hinges on our assumption of only two types. 
More complicated mechanisms will typically be required to achieve optimality with more 
types, at least in small populations. 

This last kind of lottery is a special case of a more general type of financing that is 
optimal with limited transfers when the U(Q) transfer constraint is binding. We refer to 
this as "least-cost," and it involves always producing the public good in a way that taxes 
high-cost types as little as possible, and low-cost types as much as possible. Theorem 11 
establishes that if the transfer constraints are binding, then the solution is either first-best 
(i.e. incentive constraints are not binding) or least-cost. 

An important feature of all of these simple two-stage mechanisms is that the stages 
separate the production decision (the voting stage) from the cost allocation decision (the 

25. When there are restrictions on transfers, then the good may also be produced with some probability 
0 < q < 1 when the fraction of low-cost types exactly equals j*(A)/N. 

26. Observe how much simpler this is compared with the very complicated schemes based on Clarke-taxes. 
(See, for example, Laffont and Maskin (1982) p. 76). 
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lottery, or transfer, stage). In order for this separation to work, it may be important that 
the planners have confiscatory power. If v2 is large (or if al or a2 is large), then some 
players might not wish to make the transfers required in the second stage, or may not be 
willing to partake in the lottery. These ex post individual rationality problems are severe. 
In fact the last section of the paper shows the comparatively mild constraint of interim 
individual rationality generally leads to gross inefficiency in large populations. While we 
do not work out the details of the stronger expost participation constraints on mechanisms, 
it is clear that a similar, negative result for large populations will emerge since ex post 
constraints are stronger than interim constraints. 

One extension would be to allow for continuous rather than discrete production 
technologies and continuous levels of contribution. As long as we restrict attention to 
linear technologies the main results remain unchanged. 

A second direction would be to allow for continuous types. As noted earlier, the 
characterization of optimal mechanisms relies on the restriction to two types. Elsewhere 
(Ledyard and Palfrey (1989)) we have begun to investigate the continuous-type case when 
a regularity condition on the distribution of types is satisfied. That paper derives analogous 
versions of Corollary 7 and Corollary 8. When the continuous version of the inequality 
in Corollary 7 or Corollary 8 fails to hold, "feasible implementation" constraints on the 
reduced form corresponding to QF, U(Q) and L(Q) play a role. Preliminary work on this 
indicates that those feasibility constraints are closely related to the conditions found in 
the auction literature (Matthews (1984), Maskin and Riley (1984), and Border (1991)). 

Finally, a more difficult set of issues arise if we drop the assumption of quasi-linear 
preferences. The existence of income effects, arising from non-separability or from risk 
aversion due to non-linearities in the valuation of the private good, poses formidable 
technical difficulties in the analysis. 

APPENDIX: SOME LEMMATA 

We establish a few simple but useful properties about the set of feasible and incentive compatible mechanisms. 

Lemma 1. Let (Q, a) = {(Qi, a')}IN and (Q', a') = {Q", a")},1 l be tto feasible and incentive-compatible 
(but not necessarily symmetric) inechanisms. Thten pe[O, IJ=][pQ+(1 -p)Q',pa+(1 -p)a'J is also feasible and 
incentive compatible. 

Pr-oof. Incentive compatibility of the new mechanism follows the lienarity of utility in vi, ai and Qi. 
Feasibility follows because one can produce the new allocation rule as a compound lottery in the following way. 
First, everyone reports their types: then the planner uses a public randomizing device to choose (Q, a) with 
probability p and (Q', a') with probability (I -p). II 

Lemma 2. Let P= {(Q', a')},1v be feasible and let 

NVI EN = l [Air 04,Q a', V,) + (I - ir) Vi(Q2, a', V2)1- 

Thtere exists afeasible symmetric mechtanism P= (Q, a) such that irA (Qj - v1a6l) + (1 - )(Q2 - v2a2) = co. Furthter- 
more, if P is incentive compatible thten P is incentive compatible. 

Proof: By the symmetry of the problem (i.e. the form of everyone's utility function is the same and 
everyone has symmetric priors) {QP(i), aP1')},v, is feasible and incentive compatible for every 
p:{ 1,...,N} -{,...,N} that is one-to-one (i.e. every permutation operator). By the convexity property 
established in Lemma 1, every mechanism in the convex hull of the set of all such permutations of P is feasible 
and incentive compatible. Let P be the equally weighted [by I/N!] convex combination of the permutations. 
Then Q'= 1/ EN I Q' for all i and ac= 1/N a' for all i, so P is symmetric both mechanisms generate the same 
ex ante social value. 11 
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In view of Lemma 1 and Lemma 2, we can restrict attention to symmetric mechanisms. The next lemma is 
standard for incentive-compatible mechanisms. 

Lemma 3. Let v, <v2. If (Q, a) is incentive compatible thten: 

Q I ~_> Q2 , (A.1) 
a, >a2, (A.2) 

V(Q, a, vI)> V(Q, a, V2). (A.3) 

Proof. By incentive compatibility we have: 

V(Q, a, v)> Q2-v,a2, 

V(Q, a, V2)_Q,-v2aI 

Since vI < v2, we get 

Q, - v,aI > Q2- v,a2? Q2- v2a2> Ql - V2a . 

Therefore, (A.3) follows immediately; (A.2) follows from 

[Q, -viaI-I[QI -v2aJ]>-[Q2-v,a2J- [Q2-V2a2J- 

(A.1) then follows from (A.2) and from Ql >-Q2 + vlal - a2]. I 

Lemma 4. If (Q, a) is feasible then 

K- 

Proof Suppose not. Then contributions are on average not sufficient to produce the output on the right- 
hand side of the inequality. This means that for some j,]ja + (N-j)a2 <Kqj, which violates feasibility. 11 

Lemnna 5. Suppose (al, a2, q) isfeasibk. Then Ia] + (N-j)a2 = Kqj for allj if and only if a = (K/N)Q. 

Proof Follows immediately from the feasibility constraint that jal + (N-j)aj22 Kqj and from equations 
(2) and (3). U 

Lemma 6. If(a,Q) solves (P) tlen a=(K/N)Q, wvhlere (e =ra,+(1-lr)a2 and Q=,rQz+(1-r)Q2. 
That is interim-efficient mechanisms do not waste resources. 

Proof. Suppose (a, Q) solves (P) but that a > (K/N)Q By Lemmas 4 and 5, there is some k'e {O,...,N} 
such that 

k'ak, + (N-k')ak2 > kqk'. 

We will show this implies (Q, a) cannot solve (P). We consider four cases. 
Case 1. At the optimum (Q, a), Q,-via,>Q2-v,a2 and Q2-v2a2>Q,-v2a,. Then at the optimum 

neither (4.1) nor (4.2) is binding. Therefore, increase qk a little or lower one of ak or ak a little. This 
is not possible only if qk,= 1, ak =max {y, (K- (N-k)x)/k'} and ak2= max {x, (K-k'x)/k'}. If akl= 
max {x, (K- (N-k).f)/k'} then ak =x>x. Therefore, ak =(K-k'x)/(N-k') and ak =x. Thus, 

kaka + (N- k')ak = K- (N- k')x+ K- k-' = 2K- NM 

and 

k'ak) + (N- k')a, = k'.t + (N-k')xN = N. 

Therefore Ni = K. But Ni> K. If ak) =x then a2 = x and 

kqk < ka), + (N- k')ak = N.Y < O. 

But qk2,! which is a contradiction. 
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Case 2. At the optimum, Q, - a, v= Q2- a2v, and Q2-a2v2= Q, - alv2. Thus Q1 = Q2=Q and a,= 
a2=a. Suppose that d>(K/N)Q. Let a =62=(K/N)Q. (Q, a) is feasible since one can let 
ak = ak= (K/N)q"Vk. Then 

E=Air[Ql -vi a1] + (I -r)[Q2-v2a2d 

= (Air + (1 - r))Q- (ArvI + (I - r)v2)Q(K/N) 

> (Air + (I - ir))Q- (Airv1 + (I - ir)V2)d. 

Therefore (Q, a) was not optimal. 
Case 3. At the optimum, (Ql-Q2)<v2(al-a2) and (Q1-Q2)=v1(aI-a2). A decrease in aI, keeping 

Q, Q2, a2 constant will improve E and satisfy (4) if feasible. If k' >0 and ak > qk, max {x, K- (N- k)r/ 
k'} +( - qk,) max {, - (N- k')x/k'} then such a change is feasible by reducing a4. If k'= 0 or ak' = 

qk max {?, K- (N-k')r/k'} + (1 - qk,) max {x, - (N-k)./k'}, then ak2>qk' max {.y, K-k'r/(N-k')} + 
(1 - q ) max {x, - k'x/N- k'} so we need to show that one can feasibly reduce ak2, and for some k" #k'(k" < N) 
increase ak in such a way that a2 remains unchanged, and at the same time reduce ak). Such a k" exists unless, 
for all k#k'(k<N) either 

(1) alk qA- max {+(Nk) }+(l -qk) max { t (Nk) }k>O 

or 

(2) ak qkmin {+(1qk) min 
or 

(3) k=0,ak).=qkmax {K (N-k). }+(l -qk) max ({N-k k} 

If (1), then aA <qk(K/k), so (N-k)a2>Kqk. If (2) or (3), then ak<a? . Therefore, 
Nak>kak+(N-k)ak=Kqk for k=0,l,...,N-I and Na>k'qk' which implies a2>(K/N)Q2. But 
V1(al -a2) = (Q,-Q2)<v2(al -a2)implies a I > a2. Therefore a I > a2 >(K/N)Q2.Ifa1_(K/N)Q,thenlet a,= 
(K/N)Ql, and a2= (K/N)Q2. Then (Q, a) yields a higher value for E than (Q, a) and we have a contradiction 
as long as (Q, a) is incentive compatible. If (Q, d) is not incentive compatible, then for some ? close to 0, 
(Q, a') is incentive compatible, where ad8= e + (I - e)a. Since (Q, dE) yields a higher value of E than (Q, a), 
we have a contradiction. Thus (K/N)Q, ?a1 > a2>(K/N)Q2. Thus 

K K 
- (Ql - Q2)>a l-a2 or v1 - (Q] - Q2) >vl(al - a2) N N 

But I > (K/N)vl. Therefore (Ql - Q2)> vl(al - a2), a contradiction. 
Case 4. At the optimum (Ql- Q2)=v2(al -a2) and (Q' -Q2)>v1(a,-a2). A decrease in a2, keeping 

Q and a I fixed, will improve E and satisfy (4) if feasible. If k' < N and ak > qk max {y, K- k'x/ 
(N- k')} + (1- qk,) max {x, - k'x/N- k'}, then such a change is feasible by reducing ak2. If k' = N or ak = 

qk max {., K-k'X/(N-k')} + (I-qk) max {, -k'.A/N-k'}, then a).>qk max {x, K- (N-k').t/k'} + (1 -qk)x 
max {x, - (N-k')x/k'}. So we need to show that one can feasibly lower a), and, for some k" #k'(k">0), 
increase ak. in such a way that a remains unchanged, and at the same time reduce a4 . Such a k" exists, unless 
for all k#k'(k>0) either: 

(1)a 2 = max {,K- k.J ( q)mxq< akqk - (N-k) }N-k} 
or 

(2) a'=qkmin{,k, ( k }+(I-qk) min{g, (k)} 

or 

(3) k=N, ak =qkmax { K -(N - k). }+(l-qk) max {x (N- k).} 

If (1), then ak2> K/(N-k) so kak)>Kqk. If (2) or (3), then ak2<ak. Following a similar argument to 
Case 3, we get 

K K - (Ql-Q2)<al-a2or v2- (Ql-Q2) < v2(aj-a2) N N 
If 1 <v2(K/N) then (Ql - Q2)< v2(al - a2), a contradiction. If 1 > (K/N)v2 then Q2 =Qj at the optimum. But 
then a = a2, a contradiction. 11 



352 REVIEW OF ECONOMIC STUDIES 

Finally we provide a lemma about feasible and efficient mechanisms with limited transfers which allows 
us to work entirely in the space of reduced-form mechanisms. First, given a feasible Q = (Ql, Q2), we define two 
values, U(Q) and L(Q), which correspond to the maximum and minimum expected payment of a low type. 

U(Q)=max a1 subject to (2), (3.1) and for k=0, . . ., N, qke[O, I] and 

ak<qkmin{x , } +(l-qk) min{, k)} (*) 

L(Q)=min a1 subject to (2), (31.) and for k=O0, . N, qke[O, 1] and 

ak?qk max {K, (N 
- 

}k+(l -qk) max {, (N } (k*) 

Lemma 7. Suppose a =(K/N)Q. (Q, a) isfeasible ifand only if Q is feasible and L(Q)< ?a, < U(Q). 

Proof (only if) Since (Q, a) is feasible, 3 feasible (q, a', a2) such that kak + (N- k)ak = Kqk for k= 
0, . . ., N. Since d = (K/N)Q, ak= Kqk- (N-k)ak/k for all k. Since (a, q) is feasible (1.5) and (1.6) are true. 
(1.6) implies (**) while (1.5) implies (*). Thus, L(Q) <a, < U(Q). 

(if) Given Q feasible, we know by definition that (Q, au) and (Q, aL) are feasible where 
au'= U(Q), a) =L(Q), a u= [(K/N)Q-tra u](1/1-r), and a L= [(K/N)Q-ira ](1/1 -r). That is, there are 
feasible [qu, a'u, a2U] which with (Q, au) satisfy (2) and (3). Similarly, there are feasible [qL, alL, a2LI which 
with (Q, aL) satisfy (2) and (3). Thus if Q is feasible and L(Q) < a, < U(Q) and d = (K/N)Q then there is a 
jie[O, 1] such that al = VL(Q) + (1 - t) U(Q). Therefore, p[qu, a' U a2U] + (1 - p)[qL alL, a2LI is feasible and, 
together with (Q, a), satisfies (2) and (3). 11 

Lemma 8. Let S be the slope of the indifference lines of the objective funiction for the maximnation problems 
in Theorems 2, 3, 4. 8S/IO2?0 or Q* 1. 

Proof. < V2/v, implies 

S OE/,0Q, = r(1/v,-K/N)(Av1ir+(1 -r)V2) 
,0E1,0Q2 -(t- r)[(Il/v,-K/N)(Avlr + (1 -tr)v2)-(v2-v,)/v,] 

where the denominator is > 0. Differentiation and simplification give: 

sgn (8S/O) = sgn[( V2 V) > o 

For A> v2/v,, if 1 > (K/N)v2 then Q* = I and we are done. For I < (K/N)v2, 

5 [(1 /v2-K/N)(Avo tr + (1 - r)v2) + A/V2(V2- VO)] 
- - 70 0 /V2 -KIN)(Av, tr + (I1- r)V2) 

Differentiation and simplification give: 

Sgn =(SgnL - 2v2 N)( 2 ) 0 

Lemma 9. If[O, Il]eA and I >(K/N)v2, then for all QEQF, 

L(Q) < K 
Ql <ICL(Q) 'ICu(Q). 

N - 

Proof. The last inequality follows from vl < v2 and Ql > Q2, since QeQF. Now at the solution to L(Q), 

ak = qk max {Y, k } + (1-qA,) max {x k }< K 
qkk 

Thus L(Q) _ (K/N)Q,. Finally (K/N)Q, <ICL(Q) if and only if 0 < (l /v2-K/N)(1 - ,r)(Q, - Q2) if and only 
if 1?(K/N)v2. 11 
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Lemma 10. If[0, 1]-A and 1>(K/N)v2, thenfor all QEQF, 

U(Q3 > K 
Qi > ICL(Q) 

and 

L(Q) - Qi < ICU(Q) 

Proof. Since [0, lIeA, ak> (K/N)qk is always feasible. Thus U(Q) > (K/N)Q, >L(Q). The rest follows 
from Q,>Q2, vl<v2, (K/N)vl<1_(K/N)v2. 11 

Lemma 11. Let q = (a, q) = [a,..., ,,, a,qo, . .. , q.q,] as in Section 2.2. q is feasible if and only 
if 

qkEA[, 1] (1.1) 

kak + (N-k)ak > Kqk (1.2) 

ao=0,a2=0 (1.3) 

and4akeA*=CO(X)fori= 1, 2 (1.4) 

and,for k= 1,. , N-1, 

ak>qkmax { 
K -(N - k)i + qk) max { 

- (- k( ) } (1.5) 

ak = qk max Kk } +k ( -qk) max {- N- } (1.6) 

Proof. We need to show; there is a feasible, symmetric, direct mechanism p yielding tq =(a', a2, q) if 
and only if (1.1)-(1.6). The set of feasible, symmetric, direct mechanisms when there are two types is S= 
{p :{0, . . ., N -M(ZI)} where p(k) is the measure Z on the feasible (x, y), when there are exactly k vi equal 
to vl. p eS yields tj if and only if p(k) yields (ak, as, qk) for k=O,..., N. 

(only if) Suppose y eS yields tj.Then qk =p (k)({zeZ yc = 1Z } ), and a-' = E(x'I v'= v., I (k)), the expected 
value of x' under the measure p(k) conditional on vi= vj. Let Vk= E(x'l v'= vj, p (k), y = t), for t = 0, 1, the 
conditional expected value of xi for p(k) conditional on v'= v. and y= t. Then a =qkf ik + (1 - qk).Vok. It is now 
easy to see that (1.1) (1.3) and (1.4) are true. (1.2) follows from the fact that k'k +(N-k).Y2k>O and 
kxlk+ (N-k)xk2 >K It also follows from these facts and co(X)=[.y, iJ, that 

mmin -x ( k ), , kt - (N - k): 

(1.5) and (1.6) follow from these. 
(if) (Given (a, q) satisfying (1. 1)-(1.6), we need to identify an appropriate p eS. Given (1.5) and (1.6) we 

can choose CkeCO(X) for j= 1, 2 and t =0, 1 such that 

ak = qk-x1 k + (1 -qk)x/Ok 

and 

Id',, + (N- k)r,,? tK. 

Now let A,(k)eM(Xv) be the measure on {(xi,.. ,N)} such that the probability is one that, for all 
i,x'= -Zk ifvi= vj. Then let p (k) be the measure where p((q,y))A=q-,j(k)(x) if y=l and p ((x,y))= 
(1-qk)Po(k)(x) if y=0. 11 

To see why (1.5) and (1.6) are necessary consider an example: X= {0, I }, K= 3, N= 10, k=2. For y=O, 
the only feasible xi = 0 for v' = v, and v'= v2. Therefore, Xjk = 0. For y = 1, the largest Xok is 1 and the smallest is 
0. The corresponding values of xOk are I and 3 respectively. Now (1.5) is ak >q,. max {0, (3- 8/2)} = 0 and (1.6) 
is akmqk max {0, 8} =qk If we were to try to find a feasible direct mechanism to implement qk=2 
ak= 1, a4=0 which satisfies kak+ (N-k)ak=qkK we would not be able to do it even though (1.1) to (1.4) are 
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satisfied because ak) = 1, Xjk= I forj= 0, 1. Therefore it must be true that Xok= -)8 but x2 must be either 0 or 1. 
Constraints (1.5) and (1.6) protect against this. 

Lemma 12. Suppose A = [0, 11. Let QeQFandQ2(Q1) <Q2 < Q,l 1. Then there exists Q' such that: 

(a) Q'> Q, 
(b) Q' = (Q1, Q2) E QF 

(c) U(Q')_ U(Q) 
Proof. Let {(qk, 4, a)}N o be a mechanism for which the reduced-form outputs are Q= (QI, Q2) and 

the reduced form taxes are a =(a,, a2) with a, = U(Q), and a = (K/N)Q. First note that since Q is in the 
interior of QF, there exist kI, k2 with k, > k2 > Osuch that qke E (0, lJ and qkl < 1. This follows from the characteriza- 
tion of QF given in the proof of Theorem 6. Furthermore, since a, = U(Q), we must have a k= qk min {K/k, 1I 
for k= 1, . . ., N. Consider an increase of qkt to qikt =qkl + A', and a corresponding decrease of qk2 to q k2 -A 2, 

such that Q2 remains fixed, so: 

Al ( r kk ( -z r'(1 - k I=A2( k k7o (-r)N k2 

This results in a new value Q', given by 

Q ,_ Q +AIQN 1.rki -(l _ r)N-kt -A2QN 1)k2-1(l _lr)N-k2>Q 

To establish (c), observe that it is feasible to finance (Q', Q2) exactly as (Q,, Q2) was financed, except: 

a'k, a,k+A'min{ki, } 

a'l2 aak2+A min {k, } 

Using a similar argument as before, it follows from k, >k2 that: 

-A2 m {K 4 N-1)kl(l_rN -kl 

at-a,+ A' min {ki A I ki ) (l-I 

_2 Ki 
I 

kk 1}(k)T- I( 
r 

gN - k2 >a 

Therefore U(Q') > U(Q). 11 
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